
Software Supply
Chain Security

w h i t E pa p e r

Executive brief	

Introduction	

What is the software supply chain?	

Software supply chain attacks	

Supply chain attack spotlight: event-stream

A framework for software supply chain security	

 Securing your code	

 Securing your pipelines

 DevSecOps	

Summary

2

3

6

8

10

12

12

17

20

22

Table of contents

Software Supply Chain Security

Whitepaper

Software supply chain attacks are not a new security concern, but recent high-profile attacks such as SolarWinds,
CodeCov, and Kaseya have brought the topic to the forefront of cybersecurity awareness across the globe.

Supply chain attacks have not only increased in volume and frequency, but have also become more sophisticated,
involving Advanced Persistent Threat (APT) actors. This trend, together with the potentially wide impact of a singular
successful supply chain attack, requires organizations to take dedicated steps to ensure the security and integrity of
both the software they build and supply to their customers, and/or the software they procure for internal usage.

This paper seeks to provide organizations with a guide to this perplexing topic. It introduces the concept of the
modern software supply chain, characterizes attacks targeting the software supply chain, and outlines the risk these
attacks pose. As of the beginning of 2022, standardized protection and mitigation workflows are still being
formulated as part of various federal and community initiatives, and measures such as producing and maintaining an
SBoM (Software Bill of Materials) and security automation have emerged as best practices. This paper provides an
overview of these principles to help organizations design and implement a supply chain security framework.

Gartner predicts that by 2025, 45% of organizations worldwide will
have experienced attacks on their software supply chains, a three-
fold increase from 2021

Executive brief

Software Supply Chain Security

Whitepaper

Introduction

Software Supply Chain Security

Whitepaper

Software supply chain attacks might feel like a new phenomenon but in truth they have been around for quite some

time. By their very nature, these attacks target the components, processes, and people involved in building software,

so they can be dated back to the advent of software.

Still, one cannot deny that they are becoming more and more frequent, and although the number of known,

successful supply chain attacks remains relatively small, the impact of these attacks has been extensive.

In December 2020, FireEye, a cybersecurity company, discovered a backdoor in SolarWinds’ Orion software.

Subsequent research revealed that the backdoor was inserted by the attackers by accessing the software’s build

server. Using the software’s routine update mechanism, the backdoor spread to the software’s various users. It

granted the attackers access to networks, systems and data of their victims.

One of the largest and most consequential software supply chain attacks to date, SolarWinds affected a long list of

government agencies and corporations, including the U.S. Pentagon, Department of State, Department of Homeland

Security and Microsoft.

While SolarWinds is one of the largest successful supply chain attacks to date and represents a watershed moment

in the history of cybersecurity, it is not a singular event and must be seen as part of a growing list of software supply

chain attacks.

Software Supply Chain Security

Whitepaper

The European Union Agency for Cybersecurity (ENISA), for example, identified 24 software supply chain attacks
taking place between 2020 to July 2021:

Supply chain attacks identified from January 2020 to early July 2021 (ENISA)

https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks

Software Supply Chain Security

Whitepaper

This trend has helped highlight the need for a structured response by policymakers and the security community.

Recognizing this need, the U.S government issued an executive order calling for the modernization of the its

cybersecurity; better communication and collaboration on cybersecurity between the Federal Government and the

private sector. Aiming to protect government agencies from future software supply chain attacks, the order further

instructs NIST to establish best practices, guidelines, and criteria for upcoming standards. Software suppliers will

need to comply with these standards, or they will no longer be able to sell software to the Federal Government.

Responding to this executive order, representatives from technology providers, financial services, telecom, and

cybersecurity companies signed up to support the Linux Foundation’s OpenSSF—a cross-industry collaboration to

develop improved tooling, training, research, best practices, and vulnerability disclosure, and to tighten the security of

open source supply chains, minimizing the risk of attacks.

These initiatives are part of a necessary worldwide, cross-industry effort to formulate standardized tools and

methods to protect against software supply chain attacks. But building those frameworks will take time. In the

meantime, organizations can devise and implement a software supply chain security approach based on lessons

learned from previous attacks as well as existing security tools and methodologies. This addresses current needs

and prepares organizations to comply with new standards in the future.

https://snyk.io/blog/understanding-software-supply-chain-security-requirements-cybersecurity-executive-order/
https://openssf.org/

Software Supply Chain Security

Whitepaper

What is the software supply chain?
Put simply, a software supply chain is the sum of all activities required by an organization to build, produce and
distribute software.

The easiest way to understand a software supply chain is via comparison to manufacturing supply chains.

In these traditional supply chains, a variety of activities transform raw materials into finished products. For the car
you drive, the supply chain includes all the parts used to assemblie it; but it also includes the people, tools, and
processes involved in producing the car, taking it to market, and selling it.

In comparison, in the software supply chain, development processes transform code into software. For the
application you are using (or building), the supply chain consists of code, binaries, and other components. It also
includes the development teams, tools, and processes for building, packaging, and deploying the application, and the
infrastructure used to run it.

Source Integrity Build Integrity

SCM

Source

Developer

Distribution

Package

Dependency

CI/CD

Build Use

Artifact

Process

Platform

Software Supply Chain Security

Whitepaper

Modern software development has made the software supply chain more complex than it was only a few years ago.
There are multiple reasons for this growing complexity:

Product innovation - consumers today expect intuitive, feature-rich, and cutting-edge products. This puts
software vendors under increased pressure to deliver more innovation, quickly and reliably.

External services - to enable fast delivery, organizations are more inclined to outsource elements not core to
their business by embedding external services, such as payment, navigation, speech-to-text translation
providers, and others.

Technology - technology is evolving at an unprecedented pace. New operating systems, processors, graphic
chips are providing new possibilities that were unknown up until only a few years ago. As an example, the mobile
phone has become a standard interface for countless products and services. But the average lifetime of a
mobile phone is 2.5 years.

Process - the process of building software is now based on modern methodologies and practices like agile
development, CI/CD, and DevOps, which have together resulted in an accelerated pace of delivery and time to
market.

Code - the actual code used to build an application is an assembly of a much longer list of components,
including custom code, open source dependencies, build and packaging scripts, containers, and infrastructure
provisioning configurations (i.e Infrastructure as Code). The list goes on.

Suppliers - these ingredients originate from a more diverse and distributed list of sources. They could be
privately hosted code repositories, but more often than not they come from cloud-based, even public, sources.

These changes and trends have resulted in extremely complex software supply chains and have helped make them
an attractive attack vector and target for malicious actors.

https://www.statista.com/statistics/619788/average-smartphone-life/
https://www.statista.com/statistics/619788/average-smartphone-life/

Software Supply Chain Security

Whitepaper

Software supply chain attacks
In a software supply chain attack, attackers use malicious code to compromise an “upstream” component in the
chain with the end goal of compromising the target of the attack: the “downstream component”. Compromising the
upstream component is not the end goal; it merely opens a window of opportunity for the attackers to compromise
the target of the attack, by inserting malware or providing a backdoor for future access, for example.

Source Integrity Build Integrity

SCM

Source

Developer

Distribution

Package

Dependency

CI/CD

Build Use

Artifact
Process
Platform

Any one of the links making up the software supply chain can be compromised. Indeed, there are as many possible
supply chain targets as there are types of software. But current research highlights three main targets: dependencies,
pipelines, and the combination of the two: pipeline dependencies.

Submit
bad code

(A)

Modify
code

(C)

Use bad
dependency

(E)

Bypass

CI/CD

(F)

Use bad

package

(H)

Compromise
source control

(B)

Compromise
build platform

(D)

Compromise
package repository

(G)

Software Supply Chain Security

Whitepaper

Dependencies
In this type of attack, application dependencies such as open source packages or container images pulled in by

developers to build software are compromised. Attackers use a variety of different methods to insert malicious code

into publicly accessible packages. As a result, malicious code is automatically downloaded by unsuspecting

developers using the malicious package. Dependency confusion is one such method, overriding privately-used

packages with malicious, public packages using the same name.

Pipelines
In this type of attack, the development pipeline used to build and release software is compromised. Attackers use a

variety of methods to inject malicious code into the code that defines the build process, such as CI scripts, build

tooling configurations, and infrastructure as code. As a result, the build process itself is compromised and used to

distribute malicious code to downstream consumers.

Pipeline dependencies
In this type of attack, the external dependencies used as part of the build pipeline are compromised. These could be,

for example, 3rd party plugins, tooling binaries, or the build environment itself. In the Codecov breach, attackers

obtained credentials from a Docker image and used them to compromise an ”upload bash script” used by Codecov

customers.

Software Supply Chain Security

Whitepaper

Supply chain attack spotlight: event-stream
Given the prevalence of open source in modern applications—open source is used in 98% of applications—open

source packages are increasingly becoming a popular vector for software supply chain attacks.

Open source packages, especially due to how they are managed and used in applications, have proven to be an

efficient conduit for distributing malicious code. Packages are uploaded to registries with little to no security

oversight, and are downloaded—millions of times a week in the case of popular projects—into codebases with almost

the same amount of scrutiny. For this reason, we are seeing more and more cases where popular package registries

such as npm, PyPI and RubyGems are used to distribute malicious packages.

In this section, we will focus on one of the more notable software supply chain attacks that leveraged the popular

event-stream package.

What is event-stream?
The event-stream package was a JavaScript toolkit that provided utilities for creating and managing streamsin

JavaScript applications.

Why was it targeted?
At the time of the attack, event-stream was used by 1,600 packages and downloaded 1.5M times a week, which

means the blast radius of the attack was huge. Likewise, the package was not being actively maintained—while there

were regular releases of the package up to version 3.3.4, that last release occurred over two years before this

incident. This enabled the attacker to gain control of the package.

How was the attack mounted?
First, using various methods of manipulation and subterfuge, the attacker managed to become a contributor to the

package and gained full npm publishing rights. In September 2018 he modified the package to depend on another

package called flatmap-stream. One month later, this package was altered to include malicious code which

immediately affected all subsequent downloads of event-stream.

https://thenewstack.io/the-challenges-of-securing-the-open-source-supply-chain/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/

Software Supply Chain Security

Whitepaper

What was the target of the attack?
As already mentioned, the target of such attacks is usually not the original “upstream component” but the

“downstream component.” In this case, the attack targeted Copay, a secure bitcoin wallet platform which was

successfully infiltrated in versions 5.0.2 and 5.1.0. The full details on the backdoor inserted by the malicious

package are available in this blog post.

What was the result of the attack?
At the time, event-stream was used by thousands of other JavaScript packages and was downloaded millions of

times a week. It took about a month and a half before other users noticed the malicious code. By then, this malicious

version of event-stream, version 3.3.6, had been downloaded millions of times.

https://copay.io/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/

Software Supply Chain Security

Whitepaper

A framework for software supply chain security
While software supply chain security is still very much an active field of research, and there are a variety of models

being proposed, this document aims to provide a list of common recommended best practices that make up a

framework for software supply chain security:

Secure your code - as the raw material used in the software supply chain, organizations need to apply the correct

control to custom code written by developers and the third-party components interwoven into and used by this

code.

Secure your pipelines - the different tools and processes making up the modern development workflow are

increasingly targeted by attackers and should be mapped out and secured as part of a supply chain security

framework.

DevSecOps - based on a tight alignment between security and the overall software development process, the

DevSecOps model can help organizations to understand, manage and mitigate supply chain risk. It also enforces

guardrails to ensure adherence to the two practices described above without slowing down development.

Securing your code
Code constitutes the raw material used to build the end product and is a key ingredient in the software supply chain.

Code can be developed in-house or it can be pulled in from external sources. Whatever the case, ensuring code

integrity should be one of the fundamental steps taken to tighten software supply chain security.

Software Supply Chain Security

Whitepaper

Open source

Containers
Containers are another possible weak link in the software supply chain. Security risks can be introduced via your own
code, Linux packages, open source libraries inside a container, the methods containers use to interact with the host
operating system and adjacent containers, configurations for networking and storage, and more. Besides
vulnerabilities introduced directly by the code and tools added to an image, issues can originate from other images
that a container relies on (parent or base images).

Using an SCA tool, teams can integrate security testing early and across the software development lifecycle to
manage and mitigate risks in the open source packages in an application. This includes vulnerabilities in packages
pulled into an application indirectly, by transitive dependencies. Snyk research has found that 80% of vulnerabilities in
open source packages are introduced by transitive dependencies, further illustrating the risk facing organizations
using open source and the need for SCA tools. SCA tools can also detect open source software licenses to help
organizations ensure they are compliant with the legal requirements of open source packages.

Key recommendations:

Use an SCA tool to detect third-party open source packages, including those used indirectly (transitive
dependencies).

Scan in multiple places in the software lifecycle: IDE, SCM, CI/CD.

Keep open source packages up to date to ensure both the health and security of applications.

Verify, define and prioritize pulling open source packages from trusted sources.

Train and enable developers to conduct thorough research into open source packages before usage.

Software Supply Chain Security

Whitepaper

Base images from trusted providers should be free from malicious software, but still often have vulnerabilities in the

Linux packages and developer tools they supply. Containers are freely shared, and an attacker can create a seemingly

useful container and share it, but it might harbor bitcoin miners or other malware.

A container security tool can help manage and mitigate security risk in a container image, and ideally should also

identify the base image to ensure that it is trusted. The tool should also identify the application components in

containers, especially when direct access to the source code is not available.

Key recommendations:

Start with base images from a provider you trust. Use digital signatures to verify authenticity.

When possible, opt for minimal base images that have only the basic operating system packages, and your
framework version of choice, and then build up from there.

Check your images for vulnerabilities early and often. Scan in multiple places in the software lifecycle: the
desktop, in CI, stored images in registries, and the containers / pods actively running in your clusters.

Rebuild, test and redeploy containers often, even if your software has not changed. New vulnerabilities will be
discovered and if you are using base images from trusted sources, those vulnerabilities will be fixed as the Linux
maintainers provide patches.

Monitor containers over their lifecycle to catch newly discovered vulnerabilities.

Purge old container images from registries. These images are built from older versions of Linux and application
packages and are a nuisance at best, and at worst, accidentally deployed with critical, easily exploitable
vulnerabilities. Create a well-defined policy for what needs to be saved, for how long, and who should have
access, and delete everything else that is past its useful life.

Software Supply Chain Security

Whitepaper

SBoM
Similar to the list of ingredients on food packaging, a Software Bills of Materials (SBoM) provides details on the
different components included within a supplied product: open source dependencies, containers, and build tools
used. SPDX aims to standardize how SBoMs are defined, and provides a machine-readable format the software
industry can use to build tooling that helps overcome security challenges. OWASP CycloneDX is a lightweight SBoM
standard designed for use in application security contexts and supply chain component analysis. Following President
Biden’s Executive Order, SBoMs will be a requirement for any vendor supplying software to the Federal Government
and will likely become a cross-industry standard.

Custom code
While SCA tools can help organizations identify known vulnerabilities in open source packages, they cannot help
detect potentially exploitable flaws in custom code.

Custom code can be thought of as a layer on top of the other components in the software supply chain. It also makes
the application unique. The underlying mixture of software supply chain components generally defines the sources of
data used by custom code, as well as the sanitation and sink functions. For example, using a web framework takes
away the need to program complex client-server communication and provides user input as a variable for custom
code.

Static Application Security Testing (SAST) tools check custom code for security issues. Often, these issues result
from insufficient usage of library functions, ignoring provided security functions, or using deprecated and dangerous
functions. Using a SAST tool therefore informs you of the risks resulting from the combination of supply chain
components and your custom code.

Key recommendations:

Generate and maintain an SBoM to track your third-party dependencies, tools and sources.

Routinely scan the SBoM for security risks (there is no point in producing the report without actually scrutinizing it).

Require an SBoM from third-party vendors before or during procurement of new software.

https://snyk.io/blog/advancing-sbom-standards-snyk-spdx/
https://cyclonedx.org/

Software Supply Chain Security

Whitepaper

SAST tools have a reputation for breaking the agile DevOps process by taking long scan times and providing not-

actionable or incorrect suggestions. This unbalances supply chain resilience by hindering the business. Modern tools

like Snyk Code have changed this model, and can be used early in the software development life cycle.

Infrastructure as code
As the modern software supply chain becomes more complex, development teams bear increasing responsibilities

when configuring cloud native applications: containers, infrastructure provisioning, service meshes, and more.

Developers do not always have the expertise needed to implement proper security controls for an application,

container, infrastructure, or any other software component. This can lead to misconfigurations. Insecure IaC

configurations can result in insecure cloud environments, allowing attackers to access applications and privileged

data stored in the cloud. Using early onset security scanning, organizations can detect and remediate security

misconfigurations in their source code and configuration files.

Key recommendations:

Use modern SAST tools to scan custom code, as early as possible in the development process.

Continuously scan custom code during later stages of development.

Automate scanning process as much as possible.

Actively manage dependencies and try to reduce complexities.

Train and enable developers on secure coding best practices.

Software Supply Chain Security

Whitepaper

Key recommendations:

Fix issues early by using an IaC security tool to scan configuration files and detect vulnerabilities during
development in the IDE, CI, and Git Repos.

Enforce best practice security policies and compliance rulesets throughout the development cycle. Establish
guardrails to prevent untagged resources or files defining overly-public access privileges from reaching
production.

Automate weekly scanning of applications for security misconfigurations in infrastructure as code.

Monitor for configuration drift or differences between the real-time state of your infrastructure and the one
defined in your IaC templates, and apply fixes where changes have introduced risk.

Securing your pipelines
If code is the raw material used to build software, development workflows represent the tools, processes, and
methodologies that transform this raw material into a product. Software supply chain attacks increasingly target
these workflows, leveraging the fact that they are as diverse and complex as the applications they are designed to
produce.

The Codecov attack is a good example of how development pipelines themselves can be targeted. In April 2021,
Codecov, a company providing software for code coverage and testing tools, reported that attackers had managed to
obtain valid credentials from a Docker image and use them to compromise an ”upload bash script” used by Codecov
customers. Once Codecov’s customers downloaded and executed this script, the attackers were able to exfiltrate
sensitive information that allowed them to access the customers’ resources. The attackers were able to obtain these
credentials due to an error in how those Docker images were created.

Build pipelines
In a traditional manufacturing supply chain, the assembly line compiles materials into a finished product. In the
software supply chain, the build process is responsible for pulling various code components into a software build.
This software assembly line is complex in itself, using dedicated processes, infrastructure, and tools that can be (and
have already been) leveraged in a software supply chain attack.

https://about.codecov.io/security-update/

Software Supply Chain Security

Whitepaper

For example: in October 2021, a security issue was discovered in GitHub allowing attackers to use GitHub Actions to
bypass required reviews and push unreviewed and malicious code to a protected branch. GitHub has since fixed this
issue, but this illustrates the importance of securing build pipelines.

Organizations must aspire to ensure the integrity of all aspects of build pipelines. This starts with the pipelines
themselves: build steps, build sources, and build outputs. But it also requires careful examination of the tools and
infrastructure used.

Key recommendations:

Start by mapping out your build pipelines to identify their construction and key components requiring control.

Use approved and vetted components in the build process, such as hardened container images and artifacts,
and checksum-verified tools.

Pipeline steps should be checked to ensure that the security testing they include is effective.

Use Reproducible Builds to ensure that vulnerabilities are not introduced during compilation.

Secure the pipeline infrastructure and configuration.

Source code management
Today, source code management systems (SCM) act as the central hub for an organization’s software development
lifecycle. By compromising a code repository, attackers can gain access to the software’s source code, modify CI/CD
pipeline configurations, inject malicious code, hijack credentials, or even provision vulnerable infrastructure. SCMs
are therefore another key link in the modern software supply chain that must be addressed. Modern SCMs provide
specialized features and configuration settings such as access policy controls and branch protection that can be
leveraged to harden security. These mechanisms are not always enabled by default and must be explicitly set.

https://medium.com/cider-sec/bypassing-required-reviews-using-github-actions-6e1b29135cc7
https://github.blog/changelog/2022-01-14-github-actions-prevent-github-actions-from-approving-pull-requests/
https://github.blog/changelog/2022-01-14-github-actions-prevent-github-actions-from-approving-pull-requests/
https://reproducible-builds.org/

Software Supply Chain Security

Whitepaper

Key recommendations:

Allow changes only via pull requests.

Require code reviews and forbid "push to master" which often automatically triggers a build and release.

Pay special attention to changes in build scripts and infrastructure configurations.

Require signed commits to ensure the integrity of source code.

Use multi-factor authentication (MFA) at the source code repository level for any software project.

Use and rotate SSH keys to authenticate and access source code.

Key recommendations:

Use encrypted secrets for safe credential storage.

Secrets should not be committed to a source control repository.

Use a secrets management tool to store and encrypt secrets, enforce access controls, and manage secrets.

Scan your source code repositories to ensure secrets are not committed by mistake.

Use automated service account rotation for credentials.

Assign restrictive permissions to tokens to ensure a minimal blast radius.

Secrets and credentials
Software development workflows today use different types of privileged credentials to control access to applications,
scripts, tools, and other sensitive information. These could be passwords, encryption keys, SSH keys, API tokens, and
so on. As described in the section on the Codecov attack, when these credentials are exposed, they can be used by
attackers to compromise the security of an organization’s software and, subsequently, the security of the software’s
end users.

Software Supply Chain Security

Whitepaper

Third-party tools
The open source packages used to build applications are not the only third-party components in the software supply
chain. Third-party software provided by software vendors, partners, and service providers can also introduce risk.
President Biden’s Executive Order calls for NIST to formulate guidelines to help the Federal Government evaluate
providers' supply chain security posture, such as verifying adherence to standards and certifications and requiring an
SBoM (see SBOM section above).

DevSecOps
DevSecOps refers to the integration of security practices into a DevOps software delivery model. Its foundation is a
culture where development and operations are enabled through process and tooling to take part in a shared
responsibility for delivering secure software.

DevSecOps has many benefits, including faster delivery, reduced costs, overall greater business success, and a
stronger security posture. The key elements of the model align well with a software supply chain security framework,
such as integrating security as early as possible during and throughout software development, and automating
security testing and validation to minimize human error. In the context of software supply chain security, DevSecOps
also reduces the likelihood of an attacker compromising a development pipeline.

It is not surprising that section 4 in President Biden’s Executive Order calls out the use of automated tools and
processes for enhancing supply chain security. Integrating security testing into automated development processes
(such as CI/CD) ensures continuous security across the build, deploy, and release stages.

Key recommendations:

Require third-party software vendors to be certified against relevant security standards.

Require an SBoM from third-party software vendors before or during procurement of new software.

Software Supply Chain Security

Whitepaper

Key recommendations:

Automate security as part of your CI/CD pipelines.

Align with key stakeholders in the organization, such as the DevOps and software development teams.

Create a Security Champions program to bring developers into the fold.

Empower developers to take more responsibility for security with developer-friendly security tooling.

Provide developers with guardrails, guidance and training in the form of a governance framework:

 Maintain an inventory of dependencies, pipelines and contributors

 Define security policies to manage risk explicitly

 Policies should be reasonable and maintain the balance between the need for security and fast-paced

 development

 Ensure that these policies are applied automatically during all stages of development

For more information about DevSecOps, please refer to our DevSecOps Hub.

Similar to DevOps, DevSecOps is a long-term, cross-team, and continuous effort. It cannot be achieved without a

deep change in the culture of the organization. To tighten your software supply chain security, however, there are

some key DevSecOps practices that can be adopted early on.

https://snyk.io/series/devsecops/

Software Supply Chain Security

Whitepaper

Summary
There is no reason to believe that the phenomenon of software supply chain attacks will disappear any time soon. On

the contrary, these attacks will most likely increase in both frequency and complexity, affecting more and more

organizations and exacting a growing cost.

That’s the bad news.

The good news is that the security community, backed by government and corporations, is rising to the challenge. A

set of best practices is emerging to help organizations move towards a framework for software supply chain security.

These guidelines are still very much in flux and can appear to be too comprehensive. Rome was not built in a day.

Security leaders should work together with other stakeholders in the software development process to address the

essentials. First: take measures to secure the code making up applications with dedicated application security

testing tools such as SCA and SAST. Second: secure development processes and the development environment.

Adopting a DevSecOps model can help organizations implement these two first steps with principles such as

developer enablement and security automation.

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

